Channel Estimation for Reconfigurable Intelligent Surface Aided MISO Communications: From LMMSE to Deep Learning Solutions
نویسندگان
چکیده
We consider multi-antenna wireless systems aided by reconfigurable intelligent surfaces (RIS). RIS presents a new physical layer technology for improving coverage and energy efficiency intelligently controlling the propagation environment. In practice however, achieving anticipated gains of requires accurate channel estimation. Recent attempts to solve this problem have considered least-squares (LS) approach, which is simple but also sub-optimal. The optimal estimator, based on minimum mean-squared-error (MMSE) criterion, challenging obtain non-linear due non-Gaussianity effective seen at receiver. Here we present approaches approximate MMSE estimator. As first analytically develop best linear LMMSE, together with corresponding majorization-minimization-based algorithm designed optimize phase shift matrix during training phase. This estimator shown yield improved accuracy over LS approach exploiting second-order statistical properties noise. To further improve performance better globally-optimal propose data-driven solutions deep learning. Specifically, posing estimation as an image denoising problem, two convolutional neural network (CNN)-based methods perform solution. Our numerical results show that these CNN-based estimators give superior compared approaches. They low computational complexity requirements, thereby motivating their potential use in future RIS-aided communication systems.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Artificial channel aided LMMSE estimation for time-frequency selective channels in OFDM context
This paper proposes a linear minimum mean square error-based (LMMSE) channel estimation method, which allows avoiding the necessary knowledge of the channel covariance matrix or its estimation. To do so, a perfectly tunable filter acting like an artificial channel is added at the receiver side. We show that an LMMSE estimation of the sum of this artificial channel and the physical channel only ...
متن کاملHybrid LS-LMMSE Channel Estimation Technique for LTE Downlink Systems
In this paper, we propose to improve the performance of the channel estimation for LTE Downlink systems under the effect of the channel length. As LTE Downlink system is a MIMO-OFDMA based system, a cyclic prefix (CP) is inserted at the beginning of each transmitted OFDM symbol in order to mitigate both intercarrier interference (ICI) and inter-symbol interference (ISI). The inserted CP is usua...
متن کاملA Fast LMMSE Channel Estimation Method for OFDM Systems
A fast linear minimum mean square error (LMMSE) channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM) systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the ...
متن کاملAdaptive Sparse Channel Estimation for Time-Variant MISO Communication Systems
tec (M lea cha des exp ada LM two sig To a n (AS AS alg cha me sim est tha K nor (AS (M tec ma wa mu MI im effi rec to fre cha eac em MI Tim Abstract—Cha chnical issues MSIO) commun ast mean squ annel estimati scribed by sp ploited and th aptive sparse c MS algorithms o main drawb gnal and 2) uns o overcome the novel ASCE m SCE-NLMS). SCE method gorithm (ASCE annel sparsity ethods is conf mulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE open journal of the Communications Society
سال: 2021
ISSN: ['2644-125X']
DOI: https://doi.org/10.1109/ojcoms.2021.3063171